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Review of Applications of Urn Models,
with Special Emphasis on Polya-Eggenberger

Urn Models

Kanwar Sen* and Sonali Bhattacharya**

This paper attempts to review the urn model and its applications in various
fields of engineering, science, social science, mathematics and finance. Some of
the models and applications mentioned in this paper are recent and did not find
mention in Feller (1968), Kotz and Balakrishnan (1997), and Balakrishnan and
Koutras (2002). This paper would provide researchers in various fields with new
ideas of modeling problems using the urn model.

Introduction
The first mention of urn models seems to have been made by Bernoulli (1713),
who in the third book of his Ars Conjectandi discussed the problem of drawing calculi
out of urns. Bernoulli used the urn concept to model the underlying causes and
observed the effects. It was first a quantitative attempt to construe a chance
mechanism and only later the concept of lotteries, dice game and coin tosses were
applied in explaining more specific kinds of problems. Stigler (1986, p. 124) made
a beautiful treatment of Bernoulli’s urn model to explain the Bayes’ structure for
treating the problem of Bernoulli directly. Other early evidences of the study of urn
models are found in the works of De-Moivre (1667-1754), Mountmort (1678-
1719) and Laplace (1749-1827), Quetelet (1794-1874), Ostrogadski (1801-1862),
Poisson (1781-1840), Lexis (1837-1914) and Tschuprow (1905). Since the
publication of the book Urn Models and Their Applications by Johnson and Kotz
(1977), the theory and applications of urn models have received increased attention
and intensive research among probabilists, statisticians and applied scientists alike.
This paper discusses the significance of urn model as visualized by various
statisticians in Section 2 and application of urn models in Section 3. Section 4 is
devoted to the discussion of Polya-Eggenberger model, its generalizations,
applications and modifications using predetermined strategy.
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2. Significance of Urn Models
The significance of urn models is due to the easy accessibility in a majority of
chance experiments, particularly those with a countable sample space. It is
advantageous over other things like dice having six faces, card pack having 52 cards
and chess board having 64 squares. Its significance is due to the following reasons:

• It is efficient in describing the concept of random choice which can be tested
for posteriori.

• Urn models and chance experiments can easily be compounded into new
hyperurn models corresponding to compounded experiments. Polya (1954)
has displayed that random process such as the course and pattern of weather
can be simulated as a sequence of run by using urn model.

• Even the term simulation can be interpreted as statistical equivalent to the
basic concept of isomorphism which is intrinsically associated with urn model.

• Freudenthal (1960) helped in further clarifying the point: No statistician
present at this moment will have been in doubt about the meaning of my
words when I mentioned the common statistics model. It must be stochastic
device producing random results. Tossing of coins or a dice or playing with
cards are not flexible enough. The most general chance instrument is the urn
filled with balls of different colors with tickets bearing some ciphers or letters.
This model is continuously used in our courses as a didactic tool, and in our
statistical analysis as a means of translating realistic problems into
mathematical ones. In statistical language ‘urn model’ is a standard expression.

The significance of urn model can again be expressed in words of Feudenthal as
below:

• The urn model is to be an expression of three postulates: (1) the constancy
of a probability distribution, ensured by solidity of the vessel, (2) the
random character of the choice, ensured by the narrowness of the mouth,
which is to prevent visibility of the contents and any consciously selective
choice, (3) the independence of successive choices, whenever the drawn
balls are put into the urn. Of abstract probability and statistics, the word
‘choice’ can be avoided and all can be done without reference to such a
model. But as soon as the abstract theory is applied, random choice plays
an essential role.

The point is supported by Heitele (1975) and Polya (1954). Heilete remarked,
“In principle it is possible to assign urn models with greater part of chance
experiments, at least with those countable sample spaces.” Polya asserted, “Any
problem of probability appears comparable to a suitable problem about bags
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containing balls, and any random mass phenomenon appears as similar in certain
essential respect to successive drawings of balls from a suitably combined bags.”

Markov and Polya are among the first few who used urn models for deriving
several probability distributions. A number of results in the probability theory have
been derived by using different urn models. They have also been used theoretically
to justify the Personian system of frequency curves and to explain modes of genesis
for certain Langragian distributions (Consul, 1974; Consul and Mittal, 1975; and
Janardhan and Schaeffer, 1977).

3. Applications of Urn Models
3.1 Application in Genetics
Mathematical models of population genetics can be considered equivalent to urn
models, as genes in the population correspond to balls in the urn, and genetic type
of a gene corresponds to the color of the ball. For example, consider the genetic
model as follows: Let there be a population comprising a fixed number m of genes
in any generation. Each gene is one out of two types A1 and A2. In other words, each
generation will consist of i genes of type A1 and (m – i) genes of type A2. Suppose
the genetic composition of a daughter generation is derived by binomial sampling
from the genes of parent generation, then in terms of urns and balls it is translated
as follows:

Let there be an urn containing m balls, each ball being white or black. A second
urn is then filled with m balls as follows. Balls are drawn one-by-one with replacement
from the first urn. As each ball is drawn, a new ball of the same color is placed in the
second urn. Then the probability that the second urn will have j white balls, given
that the first urn contained i white balls (or the probability that in the daughter
generation there will be j genes of type A1 given that in the parent generation there
are i such genes) is given by:
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Limiting cases in genetics corresponds in the urn context to an infinite number
of colors. A model of such a case is the following. Balls are drawn one by one with
replacement from the parent urn. As each ball is drawn, with probability (1 – u)
a ball of the same color is placed in the daughter urn, whereas with probability u,
a ball of entirely new color, not previously or currently seen during the history of
the process, is placed in the daughter urn. The latter corresponds to a mutation in
which an individual with completely new properties appears.
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3.2 Estimation of Population Size
The classic capture-recapture models to estimate the size of natural population
stem from the work of Schnabel (1938) and Chapman (1952), which discuss the
estimation of the number of fish f in the lake. In terms of urns and balls, the model
can be described as:

Start with an urn containing f indistinguishable white balls. Take n0 balls from
the urn (without replacement), dye each one black and return the black balls to the
urn. Again take a random sample (without replacement) of n0 balls and observe the
number of T1 of black balls. The aim is to estimate f, the number of balls originally
in the urn. Witts et al. (1974) used a model which allows for random variation in
the number of balls included in each sample which is not prespecified but is
represented by a binomial random variable. Darling and Ribbons (1967) described
the method with a stopping rule which is designed so that the proportional error in
the estimation of sample size has a specified value. Binns (1976) described a
sequential method to estimate f to avoid continuation of sampling in the capture-
recapture model. In terms of urn models, the method can be explained as:

Suppose that f balls are distributed randomly among m urns. The urns are selected
one at a time until the total number of balls in the first t chosen urns is at least
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


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 

m
t1 , where  is a constant, then t

mf 
~

(total number of balls when sampling

ceases).

3.3 Learning Processes
Urn models serve as a useful tool at elementary level in determining the learning
curves. Learning curves measure the performance of an individual as a function of
training time or trials. The two elementary mathematical models of learning involving
learning curves are:

1) The simple replacement model

2) The simple accumulative model

In replacement learning, some habits are replaced by others. The total number
of entries is constant. In terms of an urn model, consider an urn U with m balls of
two colors white and black. A white ball corresponds to a correct response and
black ball to an error. According to the replacement idea, m is fixed and learning is
regarded as a process of replacing black balls by white ones.

In the accumulation model, there are two urns U1 and U2. Here no balls are
removed from the urn U1 and a constant k of balls are transferred from urn U2 to U1

in each trial.
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3.4 Military Application
In situations of military nature, targets are identified with urns, and missiles are
identified with balls. Suppose that n missiles are aimed at the target in such a way
that each target has an equal chance of being hit. Then, the number of targets that
are hit or escape being hit has classical occupancy distribution. In ‘air-battle theory’
(or predator-prey models), bombers are identified with urns and fighters with
balls; ‘kill’ parameters correspond to the probability that a fighter is able to intercept
and destroy a bomber, and the number of occupied urns to the numbers of bombers
destroyed.

3.5 Application in Computer Theory
Fagin (1975) provided application of urn model in the storage of data or instructions
in computer memory. For example, computer’s memory can be regarded as urn and
pages of data as balls. Consider n balls numbered 1, 2, …, n. The probabilities with
which these numbers can be chosen are supposed to be p1, p2, ..., pn respectively.
There is an urn that contains n of the balls (i.e., nn balls in all). Initially, nn balls
are chosen at random with appropriate probabilities and placed in the urn and the
ball that has been longest is removed from the urn. If a ball is already in the urn
when its number is selected, there is no transfer of balls into or out of the urn, but
the ball becomes the most recently selected and cannot be removed until at least
nn further selections have been made. Fagin (1975) considered the sum of selection
probabilities for the number on the balls in the urn after n selections and called this
sum the weight of the urn and obtained the expected value of the weight. For
computer application, weight is the probability that a chosen page is already in the
memory.

Yet another technique for organizing data in computer files, called ‘perfect
hashing’, can be explained using the urn model. Consider random distribution of n
balls in m urns where each urn has a maximum capacity of b balls. Each ball is
randomly tossed so that the probability of a ball falling in an urn is 1/m and
independent of other tossings. If an urn already contains b balls, any subsequent
ball tossed into the urn is said to overflow. Let P(n, m, b) denote the probability of
a random distribution of n balls into m urns of size b resulting in no overflows. Let
X be the random variable denoting the number of balls in the urn (or urns) containing
the maximum number of balls. Then it is evident that    b,m,nPbXPr  . Barton
and David (1959) and David and Barton (1962) discussed a combinatorial extreme-
value problem in this case. The exact computation of this probability distribution
has been discussed by Monahan (1987) and Ramakrishna (1987).

An ingenious single urn model motivated by an imperfect debugging scheme,
in which the ball represents flaws in the system was described by Siegrist (1987).
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A single urn model is considered in which the number of balls in the urn at time
n + 1 is determined as follows:

First, each ball in the urn at time n, independently of all others is removed with

a probability  101 11   nn pp . The balls are first removed with probability that
depends on the time value.

Next a random number of new balls are added to the urn, independently of the
number of balls remaining after the first step. The equation given by Siegrist (1987)
is:

  111   nnnn VUXX ...,1,0n ...(2)

where Xn is the number of balls in the urn at time n(n = 0, 1, ...) and Un+1(Vn+1) is
the number of balls removed (added) at time n+1. Evidently, X0 = V0 (the number
of balls in the urn initially). Moreover, the distribution of Xn – Un+1 given Xn is
binomial with parameters n and pn+1, Vn+1 is independent of Xn – Un+1 for n = 0, 1,
2, … . This leads to the equation:
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where    nX
n sEsF   and    nV

n sEsG   are the probability generating functions of

Xn and Vn, respectively. The limiting cases of these distributions were also obtained.

Simha and Majumdar (1997) used the urn model to find probability distribution
of number of distinct sites accessed by transaction in a distributed database and
also probability distribution of the number of block accesses.

3.6 Application in Labor Market
Relationship between multiple applications of job seekers and vacancies in various
firms was obtained using the urn model by Gautier (2002). Suppose there are v
vacancies (urns) which are at disposal of u unemployed workers (balls). Each worker
(ball) applies randomly to one vacancy (urn). The application process is undirected
in the sense that any application is equally likely to go to any one of the vacancies
(urns), i.e., each ball is randomly thrown into one of the urns. Next, one ball is
drawn from each of these urns which will correspond to the worker who fetches the
job in the firm (or application that has been processed). The rest are returned to
workers as unsuccessful. It takes one period to process the chosen application.

3.7 Application in Biophysical and Pharmacological Modeling
In Pharmacological experimentation, a blood sample taken from the patient is distributed
in compartments (urns) depending upon the combination of components. For
example, To measure the total radioactivity in say 1 mL of blood (Asselin et al., 2002),
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it is distributed between four physical compartments: the parent radioactivity in
plasma (C1p) and erythrocytes (C1e), and similarly the metabolite radioactivity in
plasma (C2p) and erythrocytes (C2e). Following a bolus injection, the parent
radiotracer that is exchanged between plasma and erythrocytes with some rate
constants, say k1 and k2, are transformed irreversibly (without replacement) into its
main metabolite with rate constant k3 which may be considered as balls.

Chattopadhyay (2004) used the urn model to develop a Randomized Play the
Winner (RPW) rule for polychotomous treatments, for sequentially entering the
patient. It was assumed that an urn contains a balls of two types A and B. When a
patient enters a system, the patient is assigned a treatment by drawing a ball at
random (with replacement). If the patient has a response in category j , we add an
additional (L – j )b balls of the same kind and (j – 1)b balls of the opposite kind in
the urn. The rule for given (a, b) is denoted by RPWO (a, b), where ‘O’ stands for
‘ordinal’. On an average, this rule allows more patients to be treated by better
treatment in the course of decision making.

Biswas et al. (2006) designed Covariate Adjusted Continuous Drop the Loser
(CCDL) rule for treatment of patients using the urn model. They assumed an urn
having one ball each of type A, B, and I, where I is the immigration ball. For the
(i + 1)st entering patient, i  0, we draw a ball from the urn, and treat the patient by
treatment A or B if the drawn ball is of type A or B. On the other hand, if the drawn
ball is of type I, one ball each of the types A and B is added to the urn, the ball of
type I is replaced, and one ball is drawn from the urn afresh. This procedure is
continued until a ball of A or B to treat the patient is drawn. Let the response of the
patient be Yi+1, the covariate vector is xi+1, and the indicator of allocation is Ti+1.
We then replace the drawn ball with a probability pi+1 = pi+1(Yi+1, Ti+1, xi+1),
which is also a function of all the accumulated data up to the first
(i + 1) patients. The procedure is continued for the next entering patient.

3.8 Application in Portfolio Optimization
The urn based hidden Markov Model was used by Elliott and Hinz (2003) for
explaining the optimum allocation of portfolio. Suppose there is a finite set S of
urns containing balls of white and black colors of different sizes. The urns are
hidden. In the first draw the urn is selected at random. In the first step a random
machine is used for selection of an urn, a ball is drawn from it , its color and size are
recorded and it is returned to the urn. In the next step, again the random device is
used for the selection of the urn. A ball is drawn from it and shown. This process is
repeated n times. The entire process generates a sequence  n

kkx 0  of selected urns

which is not observed, and an observed sequence   n
kkkk zvy 0,   of ball color  n

kkv 0

and ball size  n
kkz 0 . It can be used to interpret the portfolio optimization by assuming
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at any step   kvnk ...,,2,1  instead of ball color represents the last observed price

movement up and down and zk represents the number of trades (or trade volume)

between time period  12 ,  kk  . Let   0ttS  is the asset price defined in the positive-

valued continuous stochastic process defined in the probability space  PF,, .

A strategy is set up wherein trading occurs at predefined times n  ...21  such

that         udS.u,S.dtStinf
kkkk  10::1   are percentage price

changes which trigger portfolio reallocation.

The optimal logarithmic portfolio   1

0




  n

kk  is given by

   
11

11









 

u
IdvP

d
IuvP kkkk

k  for all k = 0, …, n – 1 ...(4)

where d is the decision based on information Ik.

3.9 Modeling Credit Default Distribution
Amerio (2004) used reinforced urn model to design the distribution for credit default.
Considering the Polya urn model in which the urn contains a white balls and b black
balls. At every trial, a ball is drawn, its color is noted and it is returned to the urn
with s additional balls before the next drawing. For simplicity, we discretize time,
i.e., T1 …; TN  S = {u0, u1, u2, …, un, …} where 0 = u0 < u1 < u2 < … < un …; the
meaning of observing Tj = ui+1  S being that default of the jth member of the
Moody’s rated class under scrutiny happened during the time interval (ui; ui + 1].
Default in the future in a time period (ui; ui + 1] is based on the observations of
defaults that happened in the past in the same time period. Moreover, the probability
of default (non-default) in the time period (ui; ui + 1] is reinforced whenever a default
(non-default) has been observed in the same time period. Therefore, it seems natural
to control occurrences of defaults in each time period (ui; ui + 1] by means of different
Polya’s urns.

To each time point ui a Polya’s urn Ui initially containing 0
iw  white balls and 0

ib
black balls is assumed; with 0;0 00

0  ibw ; while 0
iw and 0

ib are nonnegative for
i = 1, 2, .... Reinforcement is set to be s > 0 for every urn. A process {Xn} is
iteratively defined on S in the following way: set X0 = u0 = 0: For n  1; if in uX 1

we take a sample from the urn Ui: if the ball extracted is black, we set Xn = ui+1

otherwise set Xn = u0: (Recall that urn Ui’s composition is updated each time the
urn is sampled by the rule which adds in it m balls of the same color as that of the
sampled ball). The sequence {Xn} is a RUP. A less formal description of the process
{Xn} is in order: starting from urn U0, we sequentially take a sample from urns
U0, U1, U2, … until a white ball is produced; at that time we move back to urn U0

and we start the urns sequential sampling once again.
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3.10 Birthday and Coupon Collection Problem
Inoue and Aki (2008) assumed random supply of n balls into m distinguishable
urns and with probability for any ball to drop into the ith urn is pi, i = 1, 2, …, m.
The two probabilities, which are closely related to a generalization of the
well-known combinatorial and probabilistic problems are: (1) the probability that
at least one urn contains r or more balls, (2) the probability that all urns contain r or
more balls. The Problems (1) and (2) have been named as birthday problem and
coupon collector’s problem, respectively.

Thus if i
nX  denotes the number of balls in the ith urn and i

irnF ,  denotes that ith urn

contains ri or more balls  ii
n

i
irn rXPF , , then the classical birthday problem can be

defined by the probability distribution    m
m
nnnn rXrXrXPra  ...,or,or 2

2
1

1 ,

where  mrrrr ...,,, 21  and coupon collection problem is given as   rdn

 m
m
nnn rXrXrXP  ...,,, 2

2
1

1 . Other researchers who have worked on similar

problems are Feller (1968), Flajolet et al. (1992), Diaconis and Holmes (2002),

and Charalambides (2005).

3.11 Statistical and Mathematical Application
An interesting urn model with its applications to modeling outliers was given by
Small (1985) wherein an urn containing c white and c black balls is considered.
 If on trial m, a white ball is selected, set Um = 1. If it is black, set Um = 2 before the
(m + 1)th selection, a ball of opposite color that of mth trial is put in the urn. The
sequence U1, U2, … can be continued indefinitely. Now Sni = {m: Um = i, m  n} for
i = 1, 2, … . Small (1985) allowed that such urn models can be used to model
outliers in data, wherein the behavior of outliers is governed by quantities Sni.

Paik (1983) used an urn model construction to clarify some paradoxes associated
with the concept of infinity. Suppose on day 1, 10 balls numbered 1 to 10 are put in
an urn and a ball numbered n1 is withdrawn. On day 2, 10 more balls numbered
11-20 are put in the urn and the ball numbered n2 is withdrawn. The problem is:
what would be the number of balls after the process is continued for infinitely large
number of times. The paradox is that in the experiment where n = 10i, the answer
would be infinitely many, where n = i, the answer would be none. The difference in
the result is disturbing due to the singular behavior of a function similar to the
sequence of functions on the positive real line.
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Hence, the limit of the integral  


0
xdxfn is , but the integral of the limit

   xfxf nn 
 lim  is 0. Urn model interpretation of Paik (1983) gives more precise

interpretation of this breakdown which occurs at .

Urn model found its application in describing the order statistics wherein the
urn containing N balls numbered 1 < 2 < ... < N is considered, a sample of n
balls are being drawn from it without replacement, and Xi’s (i = 1, 2, …, n) be the
number of balls, and      nXXX  ...21 be the arrangement of chosen variables
while Xi’s be the random variables better known as ‘order statistics’.

Urn models have also found applications in describing Markov Chain,
wherein N urns marked 1, 2, …, N are considered containing balls marked i

(i = 1, 2, …, N). Proportion of balls marked j in ith urn be 1,
1




n

j
ijij pp . An urn

marked say U1 is randomly chosen, a ball (marked say 1) is drawn from it randomly,

then the urn marked 1 is selected and a ball is drawn from it, and let us suppose it

is marked 2, then the urn marked 2 is selected and the process is continued. Then
U1, 1, 2 forms a Markov-Chain.

4. Distributions Based on Urn Models
An urn model is constructed by imagining a number of urns, containing balls of one
or more colors. Then balls are drawn from the urns according to certain rules. These
rules may include the addition of balls from certain rules. These rules may include the
addition of balls to or removal of balls from certain urns at various stages of the trial.
Some of the rules for an urn containing two colors of balls are mentioned here.

At each stage, s balls of the opposite color that are chosen are added (as well as
s balls of the same color) s and s may depend on the color of the chosen ball.

s (or s) may be negative, e.g., if s = –1 and s= 0, we have sampling without
replacement.

The values of s and s may vary with the number of trials, i.e., we have a
prespecified value st and st on the tth trial. The st and st may be random variables.

For urns containing more than two colors of balls, Rules (1) through (5) can be
modified. The urn model with more than two colors of balls leads to multivariate
distributions.

By considering the limiting cases as certain parameters (e.g., number of runs,
proportion of balls of certain color, number of trials) are varied, a number of continuous
distributions are regarded as approximations to discrete ones (Bartlett, 1937).
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Among the principal investigators who used urn models for developing probability
models of contagion of certain events, Markov (1917) and Eggenberger and Polya
(1923) are pioneers in the field. The urn model considered is widely known as Polya-
Eggenberger (P-E) model by some authors like Janardhan and Schaeffer (1977).

Polya-Eggenberger Model is a single urn model with balls of two colors, i.e., a
white and b black balls. A ball is drawn from the urn and then replaced along with s
balls of the same color. Then two types of sampling schemes have been defined:

1. Direct or Binomial Sampling Scheme: A sample of fixed size n is drawn,
so that if X represents the number of white balls in n drawings, then the
distribution of the random variable X when the procedure of drawing of
balls is repeated n (fixed) times is given by:
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is the P-E distribution which yields

Binomial distribution for s = 0

Hypergeometric distribution for s = –1

Discrete rectangular distribution for s = a = b

2. Inverse Binomial Sampling Scheme: Further, if X = number of white
balls preceding nth black ball, the waiting time distribution is given by:
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is known as the Inverse Polya-Eggenberger Sampling Scheme.

4.1 Key Developments on Polya-Eggenberger Model
Friedman (1949) generalized the P-E model by generalizing the P-E sampling scheme. In
Friedman’s urn model, each ball is returned together with s balls of the same color and s
balls of the opposite color. He noted the following special cases:

s = 0, s = 0 gives binomial model,

s = –1, s= 0 gives sampling without replacement,

s= 0 gives safety campaign model in which each draw of a safety campaign
      model in which each draw of a white ball is penalized, and
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s = –1, s = 1 gives the Ehrenfest Model of Heat Exchange.

A limiting case of the distribution when the limit 0,0, 






ba

s
ba

an

so that 
 1, 




 ba
s

ba
na

, was applied by Polya for explaining the epidemic of

smallpox, and Newbold (1927) for accident analysis when certain people have higher
sustainability under uniform conditions of risks.

Woodbury (1949) studied a quite different model in which s = 0, s = 0 if a
white ball appears, and s = –s > 0 if a black ball appears. This means that the
drawing of a white uninfected ball has no effect on the composition of the urn, but
a black (infected) ball causes s uninfected ball to become infected.

Naor’s (1957) urn model was studied in the context of machine-minding problem.
Naor considered an urn containing n balls of which one is white and remaining are
black. Sampling is continued until a white ball is obtained, and every time black
ball is drawn it is replaced with a white ball.

Kotz and Balakrishnan (1997) gave a review of key developments that have
occurred pertaining to two urn models, with special emphasis on P-E model in
probabilistic, statistical and biological literature during the preceding two decades.

4.2 Generalized Polya-Eggenberger Model
Sen and Mishra (1996) obtained a generalized P-E model by using a usual urn
model with a white and b black balls based on the sampling scheme which was
termed as ‘unified sampling scheme’. Let Xi be the number of white balls in the first
i balls and Yi be number of black balls in the first i balls and the event A as

     ;11...,,2,1;1   xniXnYxXA iixn 

  xnY xn   1 ...(8)

where n and  are the given integers. Sampling scheme used is as follows. The balls
are drawn from the urn one-by-one at random by P-E sampling scheme until conditions
of the event A are satisfied.

By using the above sampling scheme, Mohanty (1981) and Sen and Mishra
(1996) obtained the following probability model (by using combinatorial methods):
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where (n > 0), s ( –1) and  ( –1) are integers.
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This model is a generalized P-E model which generates many discrete distributions
for various values of n,  , s, a, b and including P-E distribution for
  = –1 and the inverse P-E distribution for   = 0.

In other words, the sampling scheme used by Mohanty (1981) and Sen and
Mishra (1996) unifies the binomial and inverse binomial sampling schemes with
the parameter µ and thus was called the ‘unified sampling scheme’.

Chung et al. (2003) considered finitely many bins each containing one ball,
additional balls are allowed to arrive one at a time (Table 1). For each new ball, with
probability p, a new bin is created and the ball is placed in that bin; with probability
1 – p, or in an existing bin, such that the probability the ball is placed in a bin is
proportional to mg, where m is the number of balls in that bin. The model leads to
the following distributions: fi is the limit of the fraction of bins with i balls and






11 i i if
p

p
K 

Table 1: Particular Cases of Chung et al.’s (2003)
Generalized Polya-Eggenberger Model

  Finite Polya Process                  Infinite Polya Process
            p = 0                          0 < p < 1

 = 1 One bin dominates One bin dominates

 = 1 Polya’s urn model Power law distribution   p
i if  1/11

0 <   < 1
All the bins grow at the

 
 1/1Ki

i eif

 = 0
same rate asymptotically

Exponentially decreasing
i

i Kf  )1(

 < 0 )/))!1(((0 i
i Kif 

4.3 Polya-Eggenberger Model for Distribution of Runs
1. Panaretos and Xekalaki (1986) defined X as the number of non-overlapping

runs of white balls of length k in the sample size n, and then the probability
distribution of X is given as:
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where the inner summation 1 is overall non-negative integers kxxx ,...,, 21 such that

kxmnkxxx k  ...2 21  ...(11)

It yields Binomial distribution of order k (Philippou and Makri, 1986) and for

p
ba

as 


 ,0 , it yields hypergeometric distribution of order k (Godbole, 1990)

for s = –1.

Under the same sampling scheme, the distribution of waiting time for
n-overlapping white ball runs of length k was obtained by Panaretos and Xekalaki
(1986)
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where the inner summation  is overall non-negative integers kxxx ,...,, 21 such that

xkxxx k  ...2 21 ...(13)

which generalizes the negative binomial distribution of order k (Philippou et al.,
1983) and waiting time hypergeometric distribution of order k (Godbole, 1990).
Sen et al. (2002a and 2002b) used lattice path approach to give unified models
for distributions of number of non-overlapping success runs of length k in a
finite sample of size n, overlapping success runs of length k and their corresponding
waiting time distributions of success. The Type-II P-E Distribution of the order
k based on overlapping success run of length k (Sen et al., 2002b) is given as
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where the inner summation is over II is over  1121 ,...,,,...,,,: rrr LLLlllL  such
that

(a)   nL  11 

  121 1 lnLL  

   21321 1 llnLLL  

  

   121121 ...1...   rrr lllnLLLL 
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(b)    rrr lllnLLLL   ...1... 21121 
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which yield Type-II Polya distribution of order k and Type-II Inverse Polya
Distribution of order k as particular case.

2. Sen et al. (2003) obtained circular distributions of order k based on
non-overlapping success runs, overlapping success runs, exact success run of
length k and of at least length k, longest and shortest run of and their corresponding
waiting time distributions and their joint distribution by using P-E sampling
scheme. So, if      C

kn
C
kn

C
kn GMN ,,, ,,  and  C

knE ,  represent respectively the number of
non-overlapping success runs of length k, overlapping success runs of length k,
success runs of at least length k and success runs of exact length k and their joint
pdf is given as:
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Sen et al. (2003) also obtained the probability function of marginal and joint
distributions of ‘inverse circular distribution’ of order k. Sen et al. (2006) extended
the study to obtain joint distributions of success and failure runs of length
(k1, k2) and its corresponding sooner or later waiting time distributions.

3. Makri et al. (2007a) used P-E sampling scheme to obtain the distribution of the
sum of the lengths of the success runs (i.e., the total number of successes in all
the success runs) of length greater than or equal to a prespecified length, and the
waiting time that the above-mentioned statistic equals or exceeds a
predetermined level. Makri et al. (2007b) also obtained Polya, inverse Polya,
circular Polya distributions of l-overlapping success runs which computes number
of (l – 1)-overlapping occurrences of success runs of length k until the nth

overlapping occurrence of a success run of length l. Erylmaz (2008) used urn
model with multicolor scheme to obtain joint distributions of runs. In this
multicolor urn scheme, a ball is drawn from the urn initially containing mj balls of
color j, j = 1, 2, ... , t and its color is noted. If a ball of color j is drawn at a stage,
s balls of color j, j = 1, 2, ..., t are added to the urn. Drawing a ball of color j is
considered as a trial of type j, j = 1, 2, ..., t. This scheme is repeated n times and
a sequence consisting of trials, namely {1, 2, ..., t}, is derived. Let
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 j
nR  be the total number of runs of type j,

 j
n  be the length of the ith run of type j,

 j
jknE , be the total number of runs of type j with length exactly equal to kj,

 j
jknG ,  be the total number of runs of type j with length at least kj,

 j
nL  be the length of the longest run of type j, and

nL be the length of the longest run of any type in Z1, Z2, ..., Zn
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Erylmaz (2008) also gave joint distribution of      t
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4. The applications of discrete distributions of runs can be found in computation
of reliability of consecutive k-out-of n: F system (Aki and Hirano, 1996),
a consecutive k-out-of-r-from n: F system (Griffith, 1986; Papastavridis and
Sfakianakis, 1991; Sfakianakis et al., 1992; Papastavridis and Koutras, 1993;
and Cai, 1994), in start-up demonstration test (Hahn and Gage, 1983),
in molecular biology (Goldstein, 1990; and Huang and Tsai, 1991), in
the study of theory of radar detection, time sharing systems and quality
control (Greenberg, 1970; Nelson, 1978; Saparstein, 1973; Mirstik, 1978; and
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Glaz, 1983) and Statistical Hypothesis Testing (Koutras and Alexandrou, 1997).
Applications of runs and scans can be found in a more detailed way in
Balakrishnan and Koutras (2002).

4.4 Distributions Based on Urn Models with Predetermined
Strategies

Janardhan (1973) and Consul (1974) seem to be the pioneers in introducing urn
models based on predetermined strategies.

Consul (1974) and Consul and Mittal (1975) described a two urn model and a
four urn model respectively which are based on the strategy of the player and obtained
distributions defined as quasi-binomial and quasi-Polya distribution using direct
sampling scheme. Compositions of the urn for both the models are given below,
w here t and n are known positive integers, but x is chosen by the person to decide
the strategy (Table 2).

Janardhan (1975) showed Markov-Polya models with predetermined strategy
with direct and inverse in both univariate and multivariate situations, which provide
new probability distributions. He developed quasi-Polya and quasi-multivariate Polya
distributions based on the urn models with predetermined strategy using direct
sampling scheme. Janardhan gave recurrence relations for probabilities as well as
expressions for the mean. He considered certain special and limiting cases. Quasi
inverse Polya distributions were obtained by using inverse sampling scheme.

Consul and Mittal (1977) considered a (s + 2) urn model with balls of s different
colours where the strategy of the player alters the contents of (s – 1) urns and hence
the probability of success. The model provides a quasi-multinomial model.

Table 2: Urn Model with Predetermined Strategy

           Pre-Strategy Post-Strategy

                      Balls
Urns

                  Balls
Urns

White Black White Black

Two Urn Model

1 a – 1 A Xt

2 a B 2 a + xt b + (n – x)t

Four Urn Model

1 a B 1 a b

2 – B 2 (n – x)t b

3 a – 3 a xt

4 a B 4 a + xt b + (n – x)t
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Janardhan and Schaeffer (1977) and Janardhan (1978) introduced new urn models
dependent upon a predetermined strategy for the development of probability model
for voting in small groups where contagion is present within each group and group
leader devises some new strategies for bringing success to candidates. Janardhan (1978)
obtained Markov-Polya distributions along with recurrence relation for the
probabilities as well as considered the special and limiting distributions and maximum
likelihood estimations. Rao and Janardhan (1984) studied the use of generalized
Markov-Polya distributions as random damage model.

Mishra et al. (1992) mentioned the moments of Quasi-Binomial Distributions
(QBD) appear in terms of series which cannot be summed up easily. The method of
moments thus fail to provide quick estimates of parameters involved. They defied
a class of QBDs by using three urn model with strategy, which includes a number of
QBDs in addition to Consul’s (1974) QBD and Consul and Mittal’s (1975) QBD.

Sen and Jain (1996) obtained three generalized urn models with predetermined
strategy based on the unified sampling scheme, which were called Generalized
Markov-Polya (GMP) models. The GMP model-I was obtained by using two urn
model which yielded quasi-Polya and inverse Polya distributions and all particular
cases of Janardhan (1975) and Consul (1974). The GMP Model-II was obtained
by using four-urn model which verified the result of Consul and Mittal (1975)
and Janardhan and Schaeffer (1977). Both these models yielded the generalized
P-E model of Mohanty (1981) and Sen and Mishra (1996). The GMP model-III
unified GMP model-I and model-II. It also yielded the class of quasi-binomial
distribution. 
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