
The IUP Journal of Computational Mathematics, Vol. III, No. 3, 201034

Magic Square Construction Algorithms
and Their Applications
Krishnappa H K*, N K Srinath** and Ramakanth Kumar P***

In recreational mathematics, a magic square of order n is an arrangement of n2

numbers, usually distinct integers, in a square, such that the sum of n numbers in
all rows, all columns and both diagonals is the same constant called the magic
number. The magic square in normal is represented using n  n matrix. A normal
magic square contains the integers from 1 to n2. Normal magic squares exist for all
orders n  1, except n = 2. The magic constant for normal magic squares of order
n is given by n(n2 + 1)/2. There are several methods for constructing the magic
square of any given order. This paper proposes algorithms to obtain the magic
square of any given order n. Some of the algorithms are straight forward and
others are designed using the divide and conquer technique.

Introduction
The magic square is represented by n x n matrix. The normal magic square contains
numbers from 1 to n2 (Ellis et al., 2002). There exists a magic square for all orders
n  1, except n = 2. Several methods exist for construction of magic square of any
given order (www.wikipedia.org).

The magic squares have several applications in fields of discrete and combinatorial
mathematics, and also in the area of graph theory. One such application of magic
square is in graph labeling. It has been proved using the magic square of order n
that, “There exists a vertex magic total labeling for all complete graph Kn”
(Krishnappa et al., 2009 and 2010).

Our process of constructing a magic square of order n is divided into the following
categories and subcategories:

• Magic square of order n, where n is odd.

• Magic square of order N, where N is even.

* Assistant Professor, Department of Computer Science and Engineering, Rashtreeya Vidyalaya College
of Engineering, Bengaluru, India; and is the corresponding author. E-mail: hk_krit@yahoo.co.in

** Professor, Department of Computer Science and Engineering, Rashtreeya Vidyalaya College of
Engineering, Bengaluru, India. E-mail: srinath_nk@yahoo.com

*** Professor, Department of Computer Science and Engineering, Rashtreeya Vidyalaya College of
Engineering, Bengaluru, India. E-mail: pramakanth2000@gmail.com

Keywords: Magic square, Magic constant, Divide and conquer, Increment-
decrement, Swap

© 2010 IUP. All Rights Reserved.

Magic Square Construction Algorithms and Their Applications 35

6 1 8

7 5 3

2 9 4

Figure 1: Magic
Square

of Order 3

– Magic square of order 4.

– Magic square of order N, for all N  2 mod 4.

– Magic square of order N, for all N  0 mod 4.

2. Algorithm for Magic Square of Order n, Where n is Odd
It is trivial for n = 1, it consists of a single cell containing the number 1.

H Coxeter had given a simple rule for generating a magic square, when n is odd
(Ellis et al., 2002).

• Start with 1 in the middle of the top row;

• Then go up and left, assigning numbers in increasing
order to empty squares;

• If you fall off the square, imagine the same square as
tiling the plane and continue;

• If a square is occupied, move down instead and continue.

The magic square of order 3 is shown in Figure 1, which is formed using the
Coxeter rule.

The following algorithm can be used to construct any magic square of order n  1,
where n is odd.

2.1 Algorithm for Magic Square of Odd Order (n)
//Description: This creates a magic square of order n, n being odd.

//Input: A positive integer n.

//Output: The n x n square matrix which is a magic square of order n.

Step 1:

//Check if n is odd.

if((n mod 2) = 0)

then return 0;

Step 2:

//Initialization

//Initialize all the entries of matrix to 0

for i <– 0 to n – 1 do

for j <– 0 to n – 1 do

square[i, j] <– 0

The IUP Journal of Computational Mathematics, Vol. III, No. 3, 201036

//Initialize the position of the first entry:

square[0, (n – 1)/2] <– 1

//Initialize the next position of row{i} and column{j}

i <– 0; j <– (n – 1)/2

Step 3:

//Move up left and fill the empty square with next integer.

for key <–2 to n2 do

if(i  1) then

k<– i – 1
else

k <– n – 1

if(j  1) then

l <– j – 1

else

l <– n – 1

if square [k, l]  1, then

i <– (i + 1) mod n

else

i <– k

j <– l

square [i, j] <– key

return square.

As another example, let us construct a magic square of order 5 (Figure 2).

Figure 2: Magic Square of Order 5

15 8 1 24 17

16 14 7 5 23

22 20 13 6 4

3 21 19 12 10

9 2 25 18 11

Magic Square Construction Algorithms and Their Applications 37

The time to initialize and obtain the square is (n2). The third ‘for loop’ in which
the key ranges over 2 to n2 is iterated n2 – 1 times and each iteration takes (l) time.
So, this ‘for loop’ takes (n2) time, since there are n2 positions at which the algorithm
must place a number. We see that (n2) is the best bound for an algorithm for the
magic square problem considered by us.

3. Magic Square of Order N, Where N is Even
In this section, we provide algorithms to construct magic square of even order.
We further divide the process into three parts.

• Magic square of order 4.

• Magic square of order N, for all N  2 mod 4.

• Magic square of order N, for all N  0 mod 4.

3.1 Magic Square of Order 4
The following algorithm can be used to construct a magic square of order 4:

3.1.1 Algorithm for Magic Square of Order_4(n)

//This algorithm generates the magic square of order 4.

//For convenience let us consider four variables

//TopIndex_X, TopIndex_Y, BottomIndex_X, BottomIndex_Y.

//Also consider two intermediate variables

//TopDownValue and BottomUpValue.

//Input: The value n which is bounded to 4.

//Output: A square matrix M, which is a 4 x 4 matrix, the magic square of order 4.

//Step 1: Initialization

//Indices

TopIndex_X <– 0;

TopIndex_Y <– 0;

BottomIndex_X <– n – 1;

BottomIndex_Y <– n – 1;

//Starting values:

TopDownValue <– 1;

BottomUpValue <– n2;

The IUP Journal of Computational Mathematics, Vol. III, No. 3, 201038

//Step 2: Repetitively fill the remaining entries:

while (TopIndex_X < BottomIndex_X) do

 while (TopIndex_Y < n) do

M[TopIndex_X][TopIndex_Y] <– TopDownValue;

M[BottomIndex_X][BottomIndex_Y] <– BottomUpValue;

TopIndex_Y <– TopIndex_Y + 1;

BottomIndex_Y <– BottomIndex_Y – 1;

TopDownValue <– TopDownValue + 1;

BottomUpValue <– BottomUpValue – 1;

if(TopIndex_Y # n/2) then

swap(TopDownValue, BottomUpValue);

TopIndex_X <– TopIndex_X + 1;

BottomIndex_X <– BottomIndex_X – 1;

TopIndex_Y <– 0;

BottomIndex_Y <– n – 1;

return M

Example: For n = 4, the working of the algorithm is depicted in Figure 3.

Figure 3: Working of the Algorithm for n = 4

(a) (b) (c) (d)

1 15 14 4

12 6

11 5

13 3 2 16

1 15 14 4

12

5

13 3 2 16

1 15 14 4

12 6 7

10 11 5

13 3 2 16

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

(e) (f) (g) (h)

1 15

2 16

1

16

1 15 14

3 2 16

1 15 14 4

13 3 2 16

Magic Square Construction Algorithms and Their Applications 39

The overall time complexity of this algorithm is (n2), since there are n2 positions
at which the algorithm must place a number.

3.2 Magic Square of Order N, for all N  2 mod 4
In this section, we present an algorithm to construct a magic square of order N,
where N is a singly even number. We adopt the divide and conquer technique and
regular swapping to obtain the magic square of order N. For convenience, let
N = 2n, where n is odd. The order of the final matrix is N x N, which in turn is
divided into 4n  n matrices. In Section 2, we presented an algorithm to construct a
magic square of order n, n being odd. By using this algorithm, we construct four
intermediate matrices M1, M2, M3 and M4, each of these matrices is of order n,
where n is odd. Finally, we combine these four intermediate matrices to get
a single matrix of order N.

The algorithm is as follows:

3.2.1 Algorithm for Magic Square of Singly Even Number (N)

//This algorithm constructs a magic square M of order N, where N  2 mod 4.

//Input: The positive even integer N.

//Output: The N x N matrix M, which is a magic square of order N.

//Step 1:

//Let M1, M2, M3, and M4 represent magic squares of order n.

n <– N/2;

if (N mod 4 # 2) then

return (0)

else

M1 = Magic Square of Odd Order (n)

//Copy M1 to other three intermediate matrices M2, M3, and M4.

for i <– 0 to n – 1 do

for j <– 0 to n – 1 do

M2[i, j] <– M1[i, j] + n2

M3[i, j] <– M1[i, j] + 2n2

M4[i, j] <– M1[i, j] + 3n2

//Step 2:

//Swap the elements of M1 with the elements of M4 in the following order.

The IUP Journal of Computational Mathematics, Vol. III, No. 3, 201040

//Start from the first row of M1, swap n/2 elements of all the rows of M1 except for

//(n/2 + 1)th row with the corresponding position of M4 matrix.

for i <– 0 to n/2 do

for j <– 0 to n/2 – 1 do

swap (M1[i, j], M4[i, j])

for i <– n/2+1 to n do

for j <– n/2+1 to n do

swap (M1[i, j], M4[i, j])

//For (n/2 + 1)th row alone, increase column by 1 and start swapping n/2 elements
of that row of M1 with the corresponding elements of matrix M4.

i <– n/2

for j <– 1 to n/2 do

swap (M1[i, j], M4[i, j])

//Starting from the last column, swap n/2 – 1 column elements of M3 with the
//corresponding elements of M2.

for i <– 0 to n – 1 do

for j <– (n – n/2)+1 to n – 1 do

swap (M2[i, j], M3[i, j])

//Step 3:

//Construct the final matrix M in the following order

// M1 M3

// M4 M2

//Copy M1 to M.

for i <– 0 to n – 1 do

for j <– 0 to n – 1 do

M[i, j] <– M1[i, j]

Magic Square Construction Algorithms and Their Applications 41

//Copy M3 to M.

for l <– 0 to n – 1 do

j <– n; k <– 0;

for i <– 0 to n – 1 do

M[i, j] <– M3[i, k]

j <– j + 1

k <– k + 1

//Copy M4 to M.

k <– 0

for i <– n to 2n –1 do

for j <– 0 to n – 1 do

M[i, j] <– M4[k, j]

k <– k + 1

//Copy M2 to M.

k <– 0

for i <– n to 2n – 1 do

l<–0

for j <– n to 2n – 1 do

M[i, j] <– M2[k, l]

l<–l + 1

k <– k + 1

//The matrix M is the desired magic square of order N.

return (M)

Example: Let us construct a magic square of order 6 using magic square of order 3.
Let M1 be a magic square of order 3, obtained by using the algorithm for magic
square of odd order (3). For N = 6, the working of the algorithm is depicted in
Figure 4.

The IUP Journal of Computational Mathematics, Vol. III, No. 3, 201042

The overall time complexity of this algorithm is (n2), since there are n2 positions
at which the algorithm must place a number.

3.3 Magic Square of Order N, for all N  0 mod 4
In this section, we present an algorithm to construct a magic square of order N,
where N is a doubly even number. We adopt the divide and conquer technique and
regular swapping to obtain the magic square of order N. For convenience, let
N = 2n, where n is even. The order of the final matrix is N x N which, in turn, is
divided into 4 n x n matrices. In sections 3.1 and 3.2, we presented algorithms to
construct a magic square of order 4 and magic square of order n, for all n  2 mod 4.
By using these algorithms we construct four intermediate matrices M1, M2, M3
and M4, each of these matrices is of order n. Finally, we combine these four
intermediate matrices to get a single matrix of order N.

The algorithm is as follows:

3.3.1 Algorithm for Magic Square of Doubly Even Number (N)

//This algorithm constructs a magic square M of order N, where N  0 mod 4.

//Input: The positive even integer N.

//Output: The N x N matrix M, which is a magic square of order N.

//Step 1:

n <– N/2;

//Let M1, M2, M3, and M4 represent Magic squares of order n.

Figure 4: Working of the Algorithm for N = 6

M1

6 1 8

7 5 3

2 9 4

M2

15 10 17

16 14 12

11 18 13

M3

24 19 26

25 23 21

20 27 22

M4

33 28 35

34 32 30

29 36 31

6 1 8 24 19 26

7 5 3 25 23 21

M1 2 9 4 20 27 22 M3

33 28 35 15 10 17

34 32 30 16 14 12

M4 29 36 31 11 18 13 M2

33 1 8 24 19 26

7 32 3 25 23 21

M1 29 9 4 20 27 22 M3

6 28 35 15 10 17

34 5 30 16 14 12

M4 2 36 31 11 18 13 M2

Magic Square Construction Algorithms and Their Applications 43

if (n = 4) then

M1= Magic Square of Order_4(n)

else

if (n mod 4 = 2) then

M1= Magic Square of Singly Even Number (n)

else

M1 = Magic Square of Doubly Even Number (n)

//Copy M1 to other three intermediate matrices M2, M3, and M4.

for i <– 0 to n – 1 do

for j <– 0 to n – 1 do

M2[i, j] <– M1[i, j] + n2

M3[i, j] <– M1[i, j] + 2n2

M4[i, j] <– M1[i, j] + 3n2

//Step 2:

//Construct the final matrix M by using the intermediate matrices M1, M2, M3
and M4

if (n mod 4 = 2) then

//Construct the final matrix M in the following order

// M1 M3

// M4 M2

//Copy M1 to M.

for i <– 0 to n – 1 do

for j <– 0 to n –1 do

M[i, j] <– M1[i, j]

//Copy M3 to M.

for l <– 0 to n – 1 do

j <– n; k <– 0;

for i <– 0 to n – 1 do

M[i, j] <– M3[i, k]

The IUP Journal of Computational Mathematics, Vol. III, No. 3, 201044

j <– j + 1

k <– k + 1

//Copy M4 to M.

k <– 0

for i <– n to 2n – 1 do

for j <– 0 to n – 1 do

M[i, j] <– M4[k, j]

k <– k + 1

//Copy M2 to M.

k <– 0

for i <– n to 2n – 1 do

l <– 0

for j <– n to 2n – 1 do

M[i, j] <– M2[k, l]

l <– l+1

k <– k + 1

if (n mod 4 = 0) then

//Construct the final matrix M in the following order

// M1 M4

// M3 M2

//Copy M1 to M.

for i <– 0 to n – 1 do

for j <– 0 to n – 1 do

M[i, j] <– M1[i, j]

//Copy M4 to M.

for l <– 0 to n – 1 do

j <– n; k <– 0;

for i <– 0 to n – 1 do

M[i, j] <– M4[i, k]

Magic Square Construction Algorithms and Their Applications 45

j <– j + 1

k <– k+1

//Copy M3 to M.

k <– 0

for i <– n to 2n – 1 do

for j <– 0 to n –1 do

M[i, j] <– M3[k, j]

k <– k + 1

//Copy M2 to M.

k <– 0

for i <– n to 2n – 1 do

l <– 0

for j <– n to 2n – 1 do

M[i, j] <– M2[k, l]

l < – l + 1

k <– k+1

//Step 3:

// Perform the row exchange to get the final magic square.

if (n mod 4 = 2) then

//Exchange the n/2 +1 number of middle rows of M1 and M3

for i <– ((n – 2)/4)+1 to n – ((n – 2)/4) do

j <– 1; k < – n + 1;

for l <– 1 to n do

swap (M[i, j], M[i, k]

j <– j + 1

k <– k + 1

//Similarly exchange the n/2 +1 number of middle rows of M4 and M2

for i <– [((n – 2)/4) + 1] + n to [n – ((n – 2)/4)] + n do

The IUP Journal of Computational Mathematics, Vol. III, No. 3, 201046

j <– 1; k <– n + 1;

for l <– 1 to n do

swap (M [i, j], M[i, k])

j <– j + 1

k <– k + 1

if (n mod 4 = 0) then

//Exchange the n/2 number of middle rows of M1 and M4

for i <– (n /4)+1 to 3n/4 do

j <– 1; k <– n + 1;

for l <– 1 to n do

swap (M [i, j], M[i, k])

j <– j + 1

k <– k + 1

//Similarly exchange the n/2 number of middle rows of M3 and M2

for i <– [(n/4) + 1] + n to [3n /4] + n do

j <– 1; k <– n + 1;

for l <– 1 to n do

swap (M [i, j], M[i, k])

j <– j + 1

k <– k + 1

//Now the matrix M is the desired magic square of order N.

return (M)

Example: Let us construct a magic square of order 8 and 12 using magic squares of
order 4 and 6, respectively. For N = 8, the working of the algorithm is depicted in
Figure 5.

n = N/2 = 8/2 = 4 and arranging the matrices in the order:

M1 M4

M3 M2

Magic Square Construction Algorithms and Their Applications 47

Finally, we take the sum of all the entries in each row, column and the two diagonals
and verify whether all the values are same or not. In this example it is 260, since
magic constant for n is given by n(n2 + 1)/2.

Therefore, 8(82 + 1)/2 = 4 x 65 = 260.

Figure 5: Working of the Algorithm for N = 8

• n/2 = 4/2 = 2

• Exchange the middle 2 rows of M1 with the middle 2 rows of M4.

• Similarly exchange the middle 2 rows of M3 with the middle 2 rows of M2.

1 15 14 4 49 63 62 52

60 54 55 57 12 6 7 9

56 58 59 53 8 10 11 5

M1 13 3 2 16 61 51 50 64 M4

33 47 46 36 17 31 30 20

28 22 23 25 44 38 39 41

24 26 27 21 40 42 43 37

M3 45 35 34 48 29 19 18 32 M2

M1

1 15 14 4

12 6 7 9

8 10 11 5

13 3 2 16

M2

17 31 30 20

28 22 23 25

24 26 27 21

29 19 18 32

M4

49 63 62 52

60 54 55 57

56 58 59 53

61 51 50 64

M3

33 47 46 36

44 38 39 41

40 42 43 37

45 35 34 48

1 15 14 4 49 63 62 52

12 6 7 9 60 54 55 57

8 10 11 5 56 58 59 53

M1 13 3 2 16 61 51 50 64 M4

33 47 46 36 17 31 30 20

44 38 39 41 28 22 23 25

40 42 43 37 24 26 27 21

M3 45 35 34 48 29 19 18 32 M2

The IUP Journal of Computational Mathematics, Vol. III, No. 3, 201048

Example: Let us now construct the magic square of order 12 using this algorithm.
The working of the algorithm is depicted in Figure 6.

N = 12, n = N/2 = 12/2 = 6.

Let M1, M2, M3, and M4 represent the magic square of order 6. Since 2 mod 4,
we use the algorithm of Section 3.2 and arrange the matrices in the order:

M1 M3

M4 M2

Figure 6: Working of the Algorithm for N = 12

M2

69 37 44 60 55 62

43 68 39 61 59 57

65 45 40 56 63 58

42 64 71 51 46 53

70 41 66 52 50 48

38 72 67 47 54 49

M1

33 1 8 24 19 36

7 32 3 25 23 21

29 9 4 20 27 22

6 28 35 15 10 17

34 5 30 16 14 12

2 36 31 11 18 13

M3

105 73 80 96 91 98

79 104 75 97 95 93

101 81 76 92 99 94

78 100 107 87 82 89

106 77 102 88 86 84

74 108 103 83 90 85

M4

141 109 116 132 127 134

115 140 111 133 131 129

137 117 112 128 135 130

114 136 143 123 118 125

142 113 138 124 122 120

110 144 139 119 126 121

33 1 8 24 19 36 105 73 80 96 91 98

7 32 3 25 23 21 79 104 75 97 95 93

29 9 4 20 27 22 101 81 76 92 99 94

6 28 35 15 10 17 78 100 107 87 82 89

34 5 30 16 14 12 106 77 102 88 86 84

M1 2 36 31 11 18 13 74 108 103 83 90 85 M3

Magic Square Construction Algorithms and Their Applications 49

Finally, we take the sum of all the entries in each row, column and the two
diagonals and verify whether all the values are same or not. In this example it is
870, since the magic constant for n is given by n(n2 + 1)/2.

Therefore, 12(122 + 1)/2 = 870.

The overall time complexity of this algorithm is (n2), since there are n2 positions
at which the algorithm must place a number.

Conclusion
The paper uses divide and conquer technique to prove that there exists a magic
square of order n for all n  1, except for n = 2. The technique attempts to divide
and swap in a regular pattern to attain the same. It is worth exploring more such
applications of the magic square as done by Krishnappa et al. (2009 and 2010). 

Figure 6 (Cont.)

• n/2 +1 = 6/2+1 = 4.
• Exchange the middle 4 rows of M1 with middle 4 rows of M3.
• Similarly exchange the middle 4 rows of M4 with the middle 4 rows of M2.

33 1 8 24 19 36 105 73 80 96 91 98

79 104 75 97 95 93 7 32 3 25 23 21

101 81 76 92 99 94 29 9 4 20 27 22

78 100 107 87 82 89 6 28 35 15 10 17

106 77 102 88 86 84 34 5 30 16 14 12

M1 2 36 31 11 18 13 74 108 103 83 90 85 M3

141 109 116 132 127 134 69 37 44 60 55 62

43 68 39 61 59 57 115 140 111 133 131 129

65 45 40 56 63 58 137 117 112 128 135 130

42 64 71 51 46 53 114 136 143 123 118 125

70 41 66 52 50 48 142 113 138 124 122 120

M4 110 144 139 119 126 121 38 72 67 47 54 49 M2

141 109 116 132 127 134 69 37 44 60 55 62

115 140 111 133 131 129 43 68 39 61 59 57

137 117 112 128 135 130 65 45 40 56 63 58

114 136 143 123 118 125 42 64 71 51 46 53

142 113 138 124 122 120 70 41 66 52 50 48

M4 110 144 139 119 126 121 38 72 67 47 54 49 M2

The IUP Journal of Computational Mathematics, Vol. III, No. 3, 201050

References
1. Ellis Horwitz, Sartaj Sahani and Sanguthevar Rajasekaran (2002), Fundamentals

of Computer Algorithms, pp. 34-36, Galgotia Publications Pvt. Ltd.

2. Krishnappa H K, Kishore Kothapalli and Venkaiah V Ch. (2009), “Vertex Magic
Total Labelings of Complete Graphs”, AKCE Journal of Graphs and Combinatorics,
Vol. 6, No. 1, pp. 143-154.

3. Krishnappa H K, Srinath N K and Ramakanth Kumar P (2010), “Vertex Magic
Total Labelings of Complete Graphs”, International Journal of Computers,
Mathematical Sciences and Applications, Vol. 4, Nos. 1-2, pp. 157-169.

4. Mac Dougall J A, Mirka Miller, Slamin and Wallis W D (2002), “Vertex Magic
Total Labelings of Graphs”, Util. Math., Vol. 61, pp. 3-21.

5. www.wikipedia.org

6. Yuqing Lin and Mirka Miller (2001), “Vertex Magic Total Labelings of Complete
Graphs”, Bull. Inst. Combin. Appl., Vol. 33, pp. 68-76.

Reference # 61J-2010-09-04-01

